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2-3-4 TREES 
2-3-4 trees allow three kinds of nodes 

• 2-nodes , one value and two children (same as normal BSTs) 

• 3-nodes,  two values and three children 

• 4-nodes, three values and four children 



2-3-4 TREES 
2-3-4 trees are ordered similar to BSTs 

- generalise node to allow multiple keys; keep tree balanced 

- each node contains 1 ≤ n ≤ 3 Items and n+1 subtrees 

- new leaves inserted at leaves; in a balanced 2-3-4 tree, all 

leaves are at same distance from root 

- 2-3-4 trees grow “upwards” from the leaves via split-promote 

 

 



2-3-4 TREES 

2-3-4 trees implementation 

    typedef struct node Node; 

    typedef struct node *Tree;  

    struct node {  

              int order;       // 2, 3 or 4  

              Item data[3]; // items in node  

              Tree child[4]; // links to subtrees  

     }; 

Make a new 2-3-4 node (always order 2): 

    Node *newNode (Item it) { 

         Node *new = malloc(sizeof(Node)); 

         assert(new != NULL); new->order = 2;  

         new->data[0] = it;  

         new->child[0] = new->child[1] = NULL;  

         return new;  

    }; 



2-3-4 TREES 

    Item *search(Tree t, Key k) { 

             if (t == NULL) return NULL; 

            int i; int diff; int nitems = t->order-1; 

                      // find relevant slot in items  

            for (i = 0; i < nitems; i++) {  

                diff = cmp(k, key(t->data[i]));  

                if (diff <= 0) break;  

             }               

              if (diff == 0) { 

                  // match; return result; 

                  return &(t-> data[i]); 

              else { 

                   // keep looking in relevant subtree  

                   return search(t-> child[i], k); 

              }; 

       } 

Searching in 2-3-4 trees: 

- compare search key against keys in node 

- find interval containing search key 

- follow associated line (recursively) 



2-3-4 TREES (CONT…) 

2-3-4 tree searching cost analysis 

 

• as for other trees, worst case determined by depth d 

• 2-3-4 trees are always balanced => depth is O log (N) 

• worst case for depth: all nodes are 2-nodes  

same case as for balanced BSTs, i.e. d ≅ log2N 

• best case for depth: all nodes are 4-nodes  

balanced tree with branching factor 4, i.e. d ≅ log4N 

 



BUILDING A 2-3-4 TREE … 7 INSERTIONS 
- To insert, first search for a leaf node in which to put the key 

- May need to split a node e.g, insert C 

• when inserting a key into a 4-node, the 4-node splits and a 

key moves up to the parent node. 

• new key may in turn cause the parent to split, moving a 

key up to the grandparent, and so on up to the root. 

 



BUILDING A 2-3-4 TREE … 7 INSERTIONS 
- To insert, first search for a leaf node in which to put the key 

- May need to split a node e.g, insert C 

• when inserting a key into a 4-node, the 4-node splits and a 

key moves up to the parent node. 

• new key may in turn cause the parent to split, moving a 

key up to the grandparent, and so on up to the root. 

 



INSERTION INTO A 2-3-4 TREE 
- Show what happens when D, S, F, U are inserted into this tree 

 



INSERTION INTO A 2-3-4 TREE 
 

- More examples of 2-3-4 insertions: 

 



MORE EXAMPLES OF 2-3-4 INSERTIONS 

- Insertion into a 2-node: 

- Insertion into a 3-node: 



MORE EXAMPLES OF 2-3-4 INSERTIONS 

- Splitting the root 

- Insertion into a 4-node – requires a split 



2-3-4 INSERT 
Insertion Algorithm 

insert(Tree, Item) {  

     Node = search(Tree, key(Item)  

     Parent = parent of Node  

     if (order(Node) < 4)  

               insert Item in Node, order++  

     else {  

               promote = Node.data[1] // middle value  

               NodeL = new Node containing data[0]  

               NodeR = new Node containing data[2]  

                if (key(Item) < key(data[1]))  

                    insert Item in NodeL  

                else  

                    insert Item in NodeR  

                 insert promote into Parent  

                 while (order(Parent) == 4)  

                        continue promote/split upwards  

                 if (isRoot(Parent) && order(Parent) == 4)  

                               split root, making new root  

             }   

} 



2-3-4 INSERT 

Following a chain of splits up to root 

- starting from insertion into a leaf 4-node 

- is not necessarily the best approach to insertion 

Alternative approach: 

- split 4-nodes attached to 2- or 3-nodes while we 

descend tree to leaf node to insert 

- guaranteed that split of leaf propagates up only 1 

level 



2-3-4 INSERT 
Top-Down Splitting strategy (part 1):  

Top-Down Splitting strategy (part 2):  



2-3-4 INSERT 
Top-Down Splitting strategy (part 3):  

Top-Down Splitting strategy (part 4):  



2-3-4 TREE PERFORMANCE 

Insertion (into tree of depth d) = O(d) comparisons 

• multiple comparisons in each of d  2-3-4 nodes 

• along with occasional splitting to shift values 

between nodes 

 

Search (in tree of depth d) = O(d) comparisons 

• multiple comparisons in each of d  2-3-4 nodes 

 

Depth of 2-3-4 tree with N nodes = log4N < d < log2N 

 

Note that all paths in a 2-3-4 tree have same length d 



2-3-4 TREE VARIATIONS 

Variation #1: why stop at 4? why not 2-3-4-5 trees? or M-

way trees? 

• allow nodes to hold up to M-1 items, and at least M/2 

• if each node is a disk-page, then we have a B-

tree (databases) 

• for B-trees, depending on Item size, M > 100/200/400 

 

Variation #2: Variation #2: don't have "variable-sized" nodes 

• use standard BST nodes, augmented with one extra 

piece of data 

• implement similar strategy as 2-3-4 trees → red-black 

trees. 



RED-BLACK TREES 

Red-Black trees are a representation of 2-3-4 trees using 

BST nodes 

A red-black tree is defined as: 

• a BST in which each node is marked red or black 

• no two red nodes appear consecutively on any path 

• a red node corresponds to a 2-3-4 sibling of its 

parent 

• a black node corresponds to a 2-3-4 child of its 

parent 

Insertion algorithm:  

• avoids worst case O(n) behaviour 

Search algorithm:  

• standard BST search 



RED-BLACK TREES 

Representing 4-nodes in red-black trees: 

Note: some texts colour the links rather than the nodes 

 



RED-BLACK TREES 

Equivalent trees (one 2-3-4, one red black): 



RED-BLACK TREES 
Red-black tree implementation: 

typedef enum {RED,BLACK} Colr;  

typedef struct Node *Link;  

typedef struct Node *Tree;  

typedef struct Node {  

            Item data; // actual data  

            Colr colour; // relationship to parent  

            Link left; // left subtree  

            Link right; // right subtree  

} Node;  

RED = node is part of the same 2-3-4 node as its parent (sibling) 

BLACK = node is a child of the 2-3-4 node containing the parent 



RED-BLACK TREES 
Making new nodes requires a colour: 

Node *newNode(Item it, Colr c) { 

       Node *new = malloc(sizeof(Node));  

       assert(new != NULL);  

       new->data = it;  

       new->colour = c;  

       new->left = new->right = NULL;   

       return new;  

}  

RED = node is part of the same 2-3-4 node as its parent (sibling) 

BLACK = node is a child of the 2-3-4 node containing the parent 



RED-BLACK TREES 

Searching method is standard BST search: 

Item *search(Tree t, Key k) {  

       if (t == NULL) return NULL;  

       int diff = cmp(k, key(t->data));  

       if (diff < 0)  

           return search(t->left, k);  

       else if (diff > 0)  

           return search(t->right, k);  

       else // matches  

           return &(t->data);  

} 



RED-BLACK TREE INSERTION 

Insertion is more complex than for standard BSTs 

• need to recall direction of last branch (L or R) 

• need to recall whether parent link is red or black 

• splitting/promoting implemented by rotateL/rotateR 

• several cases to consider depending on colour/direction 

combinations 

We first consider some of the components of this algorithm. 

#define L(t) (t)->left  

#define R(t) (t)->right  

#define red(t) ((t) != NULL && (t)->colour == RED)  

#define blk(t) ((t) != NULL && (t)->colour == BLACK) 



RED-BLACK TREES 

Insertion function top-level: 

void insertRedBlack(Tree t, Item it) 

{ 

   t->root = insertRB(t->root, it, 0); 

   t->root->colour = BLACK; 

} 

Link insertRB(Link t, Item it, int inRight) 

{ 

   if (t == NULL) return newNode(it,RED); 

   if (red(L(t)) && red(R(t))) { 

      // split 4-node and promote middle value 

      // performed as we descend tree 

   } 

   // recursive insert cases (cf. regular bst) 

   // then re-arrange links/colours after insert 

   return t'; 

} 



RED-BLACK TREES 

Splitting a 4-node, in a red-black tree: 

Code: 

if (red(L(t)) && red(R(t)) {  

   t->colour = RED;  

   t->left->colour = BLACK;  

   t->right->colour = BLACK;  

} 



RED-BLACK TREES 

Recursive insert part (cf. bst insert): 

Code: 

if (less(key(it), key(t->item))) { 

    t->left = insertRB(t->left, it, 0);  

    ... 

} 

else { key(it) larger than key in root 

    t->right = insertRB(t->right, it, 1); 

    ... 

} 



RED-BLACK TREES 

Check after insert: two successive red links = newly-created 4-

node 

Code: 

if (red(L(t)) && red(L(L(t)))) {  

   t = rotateR(t);  

   t->colour = BLACK;  

   t-right->colour = RED;  

} 



RED-BLACK TREES 

Check after insert: "normalise" direction of successive red 

links 

Code: 

if (red(t) && red(L(t)) && inRight) {  

    t = rotateR(t);  

} 



RED-BLACK TREES 

Full code for handling insertion into left subtree .. 

Code: 

if (less(key(it), key(t->item))) { 

   L(t) = insertRB(L(t), it, 0); 

   if (red(t) && red(L(t)) && inRight) 

      t = rotateR(t); 

   if (red(L(t)) && red(L(L(t))) 

      t = rotateR(t); 

      t->colour = BLACK; 

      R(t)->colour = RED; 

   }  

} 

Similar "mirror-image" code if inserted into right subtree 



RED-BLACK TREES 

Exercise 1: 2-3-4 vs Red-Black Insertion 

Show the 2-3-4 tree resulting from the insertion of: 

 

10 5 9 6 2 4 20 15 18 19 17 12 13 14  
 

Compare this to the red-black tree with the same 

values. 

 

Use this Algorithm Visualiser to build the red-black 

tree 

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html


RED-BLACK TREES 

Add red-black trees to TreeLab 

 

• Modify Node to include colour 

• Implement insertRedBlack() and insert RB() 

 

Compare against the Algorithm Visualiser to build the 

red-black tree 

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html


RED-BLACK TREES 

- Cost analysis for red-black trees: 

• tree is well-balanced; worst case search is O(log2N) 

• insertion affects nodes down one path; max rotations 

is 2d  (where d is the depth of the tree) 

- Only disadvantage is complexity of insertion/deletion 

code. 

- Note: red-black trees were popularised by Sedgewick. 


