

BALANCED TREES

COMP1927 Computing 17x1

Sedgewick Chapters 13

2-3-4 TREES
2-3-4 trees allow three kinds of nodes

• 2-nodes , one value and two children (same as normal BSTs)

• 3-nodes, two values and three children

• 4-nodes, three values and four children

2-3-4 TREES
2-3-4 trees are ordered similar to BSTs

- generalise node to allow multiple keys; keep tree balanced

- each node contains 1 ≤ n ≤ 3 Items and n+1 subtrees

- new leaves inserted at leaves; in a balanced 2-3-4 tree, all

leaves are at same distance from root

- 2-3-4 trees grow “upwards” from the leaves via split-promote

2-3-4 TREES

2-3-4 trees implementation

 typedef struct node Node;

 typedef struct node *Tree;

 struct node {

 int order; // 2, 3 or 4

 Item data[3]; // items in node

 Tree child[4]; // links to subtrees

 };

Make a new 2-3-4 node (always order 2):

 Node *newNode (Item it) {

 Node *new = malloc(sizeof(Node));

 assert(new != NULL); new->order = 2;

 new->data[0] = it;

 new->child[0] = new->child[1] = NULL;

 return new;

 };

2-3-4 TREES

 Item *search(Tree t, Key k) {

 if (t == NULL) return NULL;

 int i; int diff; int nitems = t->order-1;

 // find relevant slot in items

 for (i = 0; i < nitems; i++) {

 diff = cmp(k, key(t->data[i]));

 if (diff <= 0) break;

 }

 if (diff == 0) {

 // match; return result;

 return &(t-> data[i]);

 else {

 // keep looking in relevant subtree

 return search(t-> child[i], k);

 };

 }

Searching in 2-3-4 trees:

- compare search key against keys in node

- find interval containing search key

- follow associated line (recursively)

2-3-4 TREES (CONT…)

2-3-4 tree searching cost analysis

• as for other trees, worst case determined by depth d

• 2-3-4 trees are always balanced => depth is O log (N)

• worst case for depth: all nodes are 2-nodes

same case as for balanced BSTs, i.e. d ≅ log2N

• best case for depth: all nodes are 4-nodes

balanced tree with branching factor 4, i.e. d ≅ log4N

BUILDING A 2-3-4 TREE … 7 INSERTIONS
- To insert, first search for a leaf node in which to put the key

- May need to split a node e.g, insert C

• when inserting a key into a 4-node, the 4-node splits and a

key moves up to the parent node.

• new key may in turn cause the parent to split, moving a

key up to the grandparent, and so on up to the root.

BUILDING A 2-3-4 TREE … 7 INSERTIONS
- To insert, first search for a leaf node in which to put the key

- May need to split a node e.g, insert C

• when inserting a key into a 4-node, the 4-node splits and a

key moves up to the parent node.

• new key may in turn cause the parent to split, moving a

key up to the grandparent, and so on up to the root.

INSERTION INTO A 2-3-4 TREE
- Show what happens when D, S, F, U are inserted into this tree

INSERTION INTO A 2-3-4 TREE

- More examples of 2-3-4 insertions:

MORE EXAMPLES OF 2-3-4 INSERTIONS

- Insertion into a 2-node:

- Insertion into a 3-node:

MORE EXAMPLES OF 2-3-4 INSERTIONS

- Splitting the root

- Insertion into a 4-node – requires a split

2-3-4 INSERT
Insertion Algorithm

insert(Tree, Item) {

 Node = search(Tree, key(Item)

 Parent = parent of Node

 if (order(Node) < 4)

 insert Item in Node, order++

 else {

 promote = Node.data[1] // middle value

 NodeL = new Node containing data[0]

 NodeR = new Node containing data[2]

 if (key(Item) < key(data[1]))

 insert Item in NodeL

 else

 insert Item in NodeR

 insert promote into Parent

 while (order(Parent) == 4)

 continue promote/split upwards

 if (isRoot(Parent) && order(Parent) == 4)

 split root, making new root

 }

}

2-3-4 INSERT

Following a chain of splits up to root

- starting from insertion into a leaf 4-node

- is not necessarily the best approach to insertion

Alternative approach:

- split 4-nodes attached to 2- or 3-nodes while we

descend tree to leaf node to insert

- guaranteed that split of leaf propagates up only 1

level

2-3-4 INSERT
Top-Down Splitting strategy (part 1):

Top-Down Splitting strategy (part 2):

2-3-4 INSERT
Top-Down Splitting strategy (part 3):

Top-Down Splitting strategy (part 4):

2-3-4 TREE PERFORMANCE

Insertion (into tree of depth d) = O(d) comparisons

• multiple comparisons in each of d 2-3-4 nodes

• along with occasional splitting to shift values

between nodes

Search (in tree of depth d) = O(d) comparisons

• multiple comparisons in each of d 2-3-4 nodes

Depth of 2-3-4 tree with N nodes = log4N < d < log2N

Note that all paths in a 2-3-4 tree have same length d

2-3-4 TREE VARIATIONS

Variation #1: why stop at 4? why not 2-3-4-5 trees? or M-

way trees?

• allow nodes to hold up to M-1 items, and at least M/2

• if each node is a disk-page, then we have a B-

tree (databases)

• for B-trees, depending on Item size, M > 100/200/400

Variation #2: Variation #2: don't have "variable-sized" nodes

• use standard BST nodes, augmented with one extra

piece of data

• implement similar strategy as 2-3-4 trees → red-black

trees.

RED-BLACK TREES

Red-Black trees are a representation of 2-3-4 trees using

BST nodes

A red-black tree is defined as:

• a BST in which each node is marked red or black

• no two red nodes appear consecutively on any path

• a red node corresponds to a 2-3-4 sibling of its

parent

• a black node corresponds to a 2-3-4 child of its

parent

Insertion algorithm:

• avoids worst case O(n) behaviour

Search algorithm:

• standard BST search

RED-BLACK TREES

Representing 4-nodes in red-black trees:

Note: some texts colour the links rather than the nodes

RED-BLACK TREES

Equivalent trees (one 2-3-4, one red black):

RED-BLACK TREES
Red-black tree implementation:

typedef enum {RED,BLACK} Colr;

typedef struct Node *Link;

typedef struct Node *Tree;

typedef struct Node {

 Item data; // actual data

 Colr colour; // relationship to parent

 Link left; // left subtree

 Link right; // right subtree

} Node;

RED = node is part of the same 2-3-4 node as its parent (sibling)

BLACK = node is a child of the 2-3-4 node containing the parent

RED-BLACK TREES
Making new nodes requires a colour:

Node *newNode(Item it, Colr c) {

 Node *new = malloc(sizeof(Node));

 assert(new != NULL);

 new->data = it;

 new->colour = c;

 new->left = new->right = NULL;

 return new;

}

RED = node is part of the same 2-3-4 node as its parent (sibling)

BLACK = node is a child of the 2-3-4 node containing the parent

RED-BLACK TREES

Searching method is standard BST search:

Item *search(Tree t, Key k) {

 if (t == NULL) return NULL;

 int diff = cmp(k, key(t->data));

 if (diff < 0)

 return search(t->left, k);

 else if (diff > 0)

 return search(t->right, k);

 else // matches

 return &(t->data);

}

RED-BLACK TREE INSERTION

Insertion is more complex than for standard BSTs

• need to recall direction of last branch (L or R)

• need to recall whether parent link is red or black

• splitting/promoting implemented by rotateL/rotateR

• several cases to consider depending on colour/direction

combinations

We first consider some of the components of this algorithm.

#define L(t) (t)->left

#define R(t) (t)->right

#define red(t) ((t) != NULL && (t)->colour == RED)

#define blk(t) ((t) != NULL && (t)->colour == BLACK)

RED-BLACK TREES

Insertion function top-level:

void insertRedBlack(Tree t, Item it)

{

 t->root = insertRB(t->root, it, 0);

 t->root->colour = BLACK;

}

Link insertRB(Link t, Item it, int inRight)

{

 if (t == NULL) return newNode(it,RED);

 if (red(L(t)) && red(R(t))) {

 // split 4-node and promote middle value

 // performed as we descend tree

 }

 // recursive insert cases (cf. regular bst)

 // then re-arrange links/colours after insert

 return t';

}

RED-BLACK TREES

Splitting a 4-node, in a red-black tree:

Code:

if (red(L(t)) && red(R(t)) {

 t->colour = RED;

 t->left->colour = BLACK;

 t->right->colour = BLACK;

}

RED-BLACK TREES

Recursive insert part (cf. bst insert):

Code:

if (less(key(it), key(t->item))) {

 t->left = insertRB(t->left, it, 0);

 ...

}

else { key(it) larger than key in root

 t->right = insertRB(t->right, it, 1);

 ...

}

RED-BLACK TREES

Check after insert: two successive red links = newly-created 4-

node

Code:

if (red(L(t)) && red(L(L(t)))) {

 t = rotateR(t);

 t->colour = BLACK;

 t-right->colour = RED;

}

RED-BLACK TREES

Check after insert: "normalise" direction of successive red

links

Code:

if (red(t) && red(L(t)) && inRight) {

 t = rotateR(t);

}

RED-BLACK TREES

Full code for handling insertion into left subtree ..

Code:

if (less(key(it), key(t->item))) {

 L(t) = insertRB(L(t), it, 0);

 if (red(t) && red(L(t)) && inRight)

 t = rotateR(t);

 if (red(L(t)) && red(L(L(t)))

 t = rotateR(t);

 t->colour = BLACK;

 R(t)->colour = RED;

 }

}

Similar "mirror-image" code if inserted into right subtree

RED-BLACK TREES

Exercise 1: 2-3-4 vs Red-Black Insertion

Show the 2-3-4 tree resulting from the insertion of:

10 5 9 6 2 4 20 15 18 19 17 12 13 14

Compare this to the red-black tree with the same

values.

Use this Algorithm Visualiser to build the red-black

tree

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

RED-BLACK TREES

Add red-black trees to TreeLab

• Modify Node to include colour

• Implement insertRedBlack() and insert RB()

Compare against the Algorithm Visualiser to build the

red-black tree

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

RED-BLACK TREES

- Cost analysis for red-black trees:

• tree is well-balanced; worst case search is O(log2N)

• insertion affects nodes down one path; max rotations

is 2d (where d is the depth of the tree)

- Only disadvantage is complexity of insertion/deletion

code.

- Note: red-black trees were popularised by Sedgewick.

