Balanced Trees

- COMP1927 Computing 17x1
- Sedgewick Chapters 13

2-3-4 Trees

2-3-4 trees allow three kinds of nodes

- 2-nodes, one value and two children (same as normal BSTs)
- 3-nodes, two values and three children
- 4-nodes, three values and four children

2-3-4 Trees

2-3-4 trees are ordered similar to BSTs

- generalise node to allow multiple keys; keep tree balanced
- each node contains $1 \leq n \leq 3$ Items and $n+1$ subtrees
- new leaves inserted at leaves; in a balanced 2-3-4 tree, all leaves are at same distance from root
- 2-3-4 trees grow "upwards" from the leaves via split-promote

2-3-4 TREES

2-3-4 trees implementation

typedef struct node Node; typedef struct node *Tree; struct node \{ int order; $\quad / / 2,3$ or 4
Item data[3]; // items in node Tree child[4]; // links to subtrees

Make a new 2-3-4 node (always order 2):
Node *newNode (Item it) \{
Node *new = malloc(sizeof(Node));
assert(new != NULL); new->order = 2;
new->data[0] = it;
new->child[0] = new->child[1] = NULL;
return new;
\};

2-3-4 Trees

Searching in 2-3-4 trees:

- compare search key against keys in node
- find interval containing search key
- follow associated line (recursively)

```
Item *search(Tree t, Key k) {
    if ( }\textrm{t}==\textrm{NULL}\mathrm{ ) return NULL;
    int i; int diff; int nitems = t->order-1;
            // find relevant slot in items
    for (i = 0; i < nitems; i++) {
        diff = cmp(k, key(t->data[i]));
        if (diff <= 0) break;
    }
    if (diff == 0) {
        // match; return result;
        return &(t-> data[i]);
    else {
        // keep looking in relevant subtree
        return search(t-> child[i], k);
    };
}
```


2-3-4 Trees (Cont...)

2-3-4 tree searching cost analysis

- as for other trees, worst case determined by depth d
- 2-3-4 trees are always balanced $=>$ depth is $O \log (N)$
- worst case for depth: all nodes are 2 -nodes same case as for balanced BSTs, i.e. $d \cong \log _{2} N$
- best case for depth: all nodes are 4 -nodes balanced tree with branching factor 4 , i.e. $d \cong \log _{4} N$

BuILding a 2-3-4 TREE ... 7 Insertions

- To insert, first search for a leaf node in which to put the key
- May need to split a node e.g, insert C
- when inserting a key into a 4 -node, the 4 -node splits and a key moves up to the parent node.
- new key may in turn cause the parent to split, moving a key up to the grandparent, and so on up to the root.

(A) M (T)

BuILding a 2-3-4 TREE ... 7 Insertions

- To insert, first search for a leaf node in which to put the key
- May need to split a node e.g, insert C
- when inserting a key into a 4 -node, the 4 -node splits and a key moves up to the parent node.
- new key may in turn cause the parent to split, moving a key up to the grandparent, and so on up to the root.

(A) M (T)

Insertion Into a 2-3-4 Tree

- Show what happens when D, S, F, U are inserted into this tree

Insertion Into a 2-3-4 Tree

- More examples of 2-3-4 insertions:

More examples Of 2-3-4 insertions

- Insertion into a 2 -node:

- Insertion into a 3-node:

More examples Of 2-3-4 insertions

- Insertion into a 4-node - requires a split

- Splitting the root

2-3-4 InsERT

Insertion Algorithm

```
insert(Tree, Item) {
    Node = search(Tree, key(Item)
    Parent = parent of Node
    if (order(Node) < 4)
    insert Item in Node, order++
    else {
        promote = Node.data[1] // middle value
    NodeL = new Node containing data[0]
    NodeR = new Node containing data[2]
    if (key(Item) < key(data[1]))
        insert Item in NodeL
    else
        insert Item in NodeR
        insert promote into Parent
    while (order(Parent) == 4)
        continue promote/split upwards
        if (isRoot(Parent) && order(Parent) == 4)
        split root, making new root
    }
}
```


2-3-4 Insert

Following a chain of splits up to root

- starting from insertion into a leaf 4-node
- is not necessarily the best approach to insertion Alternative approach:
- split 4-nodes attached to 2 - or 3 -nodes while we descend tree to leaf node to insert
- guaranteed that split of leaf propagates up only 1 level

2-3-4 Insert

Top-Down Splitting strategy (part 1):

Top-Down Splitting strategy (part 2):

2-3-4 Insert

Top-Down Splitting strategy (part 3):

Top-Down Splitting strategy (part 4):

2-3-4 TREE PERFORMANCE

Insertion (into tree of depth d) $=O(d)$ comparisons

- multiple comparisons in each of d 2-3-4 nodes
- along with occasional splitting to shift values between nodes

Search (in tree of depth d) $=O(d)$ comparisons

- multiple comparisons in each of d 2-3-4 nodes

Depth of 2-3-4 tree with N nodes $=\log _{4} N<d<\log _{2} N$
Note that all paths in a 2-3-4 tree have same length d

2-3-4 TREE VARIATIONS

Variation \#1: why stop at 4 ? why not 2-3-4-5 trees? or Mway trees?

- allow nodes to hold up to M - 1 items, and at least $M / 2$
- if each node is a disk-page, then we have a Btree (databases)
- for B-trees, depending on Item size, $M>100 / 200 / 400$

Variation \#2: Variation \#2: don't have "variable-sized" nodes

- use standard BST nodes, augmented with one extra piece of data
- implement similar strategy as 2-3-4 trees \rightarrow red-black trees.

Red-Black Trees

Red-Black trees are a representation of 2-3-4 trees using BST nodes
A red-black tree is defined as:

- a BST in which each node is marked red or black
- no two red nodes appear consecutively on any path
- a red node corresponds to a 2-3-4 sibling of its parent
- a black node corresponds to a 2-3-4 child of its parent
Insertion algorithm:
- avoids worst case $O(n)$ behaviour Search algorithm:
- standard BST search

Red-Black Trees

Representing 4-nodes in red-black trees:

2-3-4 nodes

Note: some texts colour the links rather than the nodes

Red-Black Trees

Equivalent trees (one 2-3-4, one red black):

Red-Black Trees

Red-black tree implementation:

typedef enum $\{$ RED,BLACK $\}$ Colr;
typedef struct Node *Link;
typedef struct Node *Tree;
typedef struct Node \{
Item data; // actual data
Colr colour; // relationship to parent
Link left; // left subtree
Link right; // right subtree
\} Node;

RED = node is part of the same 2-3-4 node as its parent (sibling) BLACK = node is a child of the 2-3-4 node containing the parent

Red-BLack Trees

Making new nodes requires a colour:

```
Node *newNode(Item it, Colr c) \{
    Node *new = malloc(sizeof(Node));
    assert(new != NULL);
    new->data \(=\) it;
    new->colour \(=c\);
    new \(->\) left \(=\) new \(->\) right \(=\) NULL;
    return new;
```

\}

RED = node is part of the same 2-3-4 node as its parent (sibling) BLACK = node is a child of the 2-3-4 node containing the parent

Red-Black Trees

Searching method is standard BST search:

```
Item *search(Tree t, Key k) \{
    if ( \(\mathrm{t}==\mathrm{NULL}\) ) return NULL;
    int diff \(=\mathrm{cmp}(\mathrm{k}, \operatorname{key}(\mathrm{t}->\) data \()\) );
    if (diff < 0)
        return search(t->left, k);
        else if (diff \(>0\) )
            return search(t->right, k);
    else // matches
        return \&(t->data);
```


Red-Black Tree Insertion

Insertion is more complex than for standard BSTs

- need to recall direction of last branch (L or R)
- need to recall whether parent link is red or black
- splitting/promoting implemented by rotateL/rotateR
- several cases to consider depending on colour/direction combinations
We first consider some of the components of this algorithm.

```
#define L(t) (t)->left
#define R(t) (t)->right
#define red(t) ((t) != NULL && (t)->colour == RED)
#define blk(t) ((t) != NULL && (t)->colour == BLACK)
```


Red-BLack Trees

Insertion function top-level:

```
void insertRedBlack(Tree t, Item it)
{
    t->root = insertRB(t->root, it, 0);
    t->root->colour = BLACK;
}
Link insertRB(Link t, Item it, int inRight)
{
    if (t == NULL) return newNode(it,RED);
    if (red(L(t)) && red(R(t))) {
        // split 4-node and promote middle value
        // performed as we descend tree
    }
    // recursive insert cases (cf. regular bst)
    // then re-arrange links/colours after insert
    return t';
}
```


Red-Black Trees

Splitting a 4-node, in a red-black tree:


```
Code: if \((\operatorname{red}(\mathrm{L}(\mathrm{t})) \& \& \operatorname{red}(\mathrm{R}(\mathrm{t}))\{\)
t->colour = RED;
\(\mathrm{t}->\) left->colour \(=\) BLACK;
t->right->colour = BLACK;
```


Red-Black Trees

Recursive insert part (cf. bst insert):

```
Code:
if (less(key(it), key(t->item))) {
    t->left = insertRB(t->left, it, 0);
else { key(it) larger than key in root
    t->right = insertRB(t->right, it, 1);
```


Red-Black Trees

Check after insert: two successive red links $=$ newly-created 4 node

Code: if $(\operatorname{red}(\mathrm{L}(\mathrm{t})) \& \& \operatorname{red}(\mathrm{~L}(\mathrm{~L}(\mathrm{t}))))\{$
$\mathrm{t}=\operatorname{rotateR}(\mathrm{t})$;
t->colour = BLACK; t-right->colour $=$ RED;

Red-Black Trees

Check after insert: "normalise" direction of successive red links

Code: if $(\operatorname{red}(\mathrm{t}) \& \& \operatorname{red}(\mathrm{~L}(\mathrm{t})) \& \& \operatorname{inRight})\{$ $\mathrm{t}=\operatorname{rotate} \mathrm{R}(\mathrm{t})$;

Red-BLack Trees

Full code for handling insertion into left subtree ..

```
Code:
if (less(key(it), key(t->item))) {
    L(t) = insertRB(L(t), it, 0);
    if (red(t) && red(L(t)) && inRight)
        t = rotateR(t);
    if (red(L(t)) && red(L(L(t)))
        t = rotateR(t);
        t->colour = BLACK;
        R(t)->colour = RED;
    }
}
```

Similar "mirror-image" code if inserted into right subtree

Red-Black Trees

Exercise 1: 2-3-4 vs Red-Black Insertion

Show the 2-3-4 tree resulting from the insertion of:

$$
10596242015181917121314
$$

Compare this to the red-black tree with the same values.

Use this Algorithm Visualiser to build the red-black tree

Red-Black Trees

Add red-black trees to TreeLab

- Modify Node to include colour
- Implement insertRedBlack() and insert RB()

Compare against the Algorithm Visualiser to build the red-black tree

Red-Black Trees

- Cost analysis for red-black trees:
- tree is well-balanced; worst case search is $\mathrm{O}(\log 2 \mathrm{~N})$
- insertion affects nodes down one path; max rotations is 2 d (where d is the depth of the tree)
- Only disadvantage is complexity of insertion/deletion code.
- Note: red-black trees were popularised by Sedgewick.

